
CHAPTER 3 

RESEARCH METHODOLOGY 

3.1  INTRODUCTION 

The research methodology and the framework to be used for the proposed 

sports video classification system are discussed in this chapter. The proposed system 

classifies the commonly interested five sports category: baseball, volleyball, football, 

cricket and tennis. The following sections describe the mathematical background of 

NSST, SVM and KNN. In this study, the proposed methodology considers several 

methodologies that have been done by previous researchers that relates to the thesis.  

In order to achieve better performance, new techniques have been proposed based on 

methodologies given in this chapter. 

3.2  BASIC SIGNAL TRANSFORMS 

In digital image processing, there are numerous transforms applied on digital 

images in order to analyze and manipulate the images. Still images are commonly 

described as two-dimensional signals. Hence this section presents various popular 2-D 

transformation techniques.  

3.2.1  DISCRETE FOURIER TRANSFORM 

The Discrete Fourier transform (DFT) is a special case of Z-transform. It is the 

sampled Fourier transform that requires an input signal that is discrete. The discrete 

version of a continuous signal is often created by sampling it. DFT produces the sine 

and cosine components of an image. A digital image contains point samples of a 

band-limited continuous 2D signal. According to the uniform sampling theorem, a 
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signal is band-limited if it contains no energy at frequencies higher than some band 

limit. The output of DFT represents the image in the frequency domain, while the 

input image is the spatial domain equivalent. In the image equivalent of the Fourier 

coefficients, each point represents a particular frequency contained in the spatial 

domain image (Theodoridis and koutroumbas 2008). For an image X of size NN* , 

the 2-D discrete Fourier transform is given by (3.1)
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The set of Fourier Coefficients corresponding to the digital image can be 

retransformed to the spatial domain using the inverse Fourier transform, which is 

given by (3.2)       
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 (3.2) 

3.2.2  DISCRETE COSINE TRANSFORM 

The DCT (Ahmed et al., 1974) is a Fourier related transform, similar to the 

discrete Fourier transform, which uses only real numbers. It expresses a signal in 

terms of a sum of cosine functions oscillating at different frequencies. An obvious 

distinction between a discrete cosine transform and a discrete Fourier transform is that 

the discrete cosine transform uses only cosine functions, while the discrete Fourier 

transform uses both cosine and sine functions. The DCT is utilized in many 

applications, with the most notable being the MPEG Audio Layer-3 (MP3) music 

format, as well as the Joint Photographic Experts Group (JPEG) image format. For a 
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2-D signal, like an image, x of size NN* , the DCT (Theodoridis and koutroumbas 

2008) is given by (3.3) 

)
2

)12(
cos().

2

)12(
cos(.),()().(),(

1

0

1

0 N

vn

N

um
nmxvauavuC

N

m

N

n

++
å å=
-

=

-

=

pp
         (3.3) 

while the inverse 2D discrete cosine transform is given by 
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3.2.3  DISCRETE WAVELET TRANSFORM 

The basis of the wavelet transform called wavelets, are scaling functions and 

wavelet functions (Vetterli and Kovacevic 1995). Different wavelet transforms are 

based on different wavelet basis functions. Many canonical families of orthogonal 

wavelet basis functions exist, such as the Haar wavelets, the Daubechies wavelets 

(Daubechies 1990) and the Morlet wavelets. Each wavelet family consists of various 

distinct sets of wavelet basis functions. For example, the Daubechies family wavelets � � � � � � � � � � � 	 � � � 
 � 	 � � �  � � � � � � � � �
-N

� � � � � � � N is the order. Compared with the 

sinusoid function which is smooth and symmetric with infinite time duration, 

wavelets may be asymmetric and are fast changing with limited duration. Therefore 

wavelets can efficiently represent discontinuity in a signal. In practice, images are 
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represented usually in the discrete domain. All the continuous transforms are 

necessarily extended to their corresponding discrete forms.  

 In the 2D multiresolution wavelet transform, one must introduce a scaling 

function F(x,y) and a wavelet function y(x,y) that are separable. That is 

 )()(),( yxyx FF=F            (3.6) 

and 

 )()(),( yxyx yyy =            (3.7) 

In addition, the combinations of these functions are defined as 

 )()(),( 1 yxyx FF=F           (3.8) 

 )()(),( yxyx h yy F=           (3.9) 

 )()(),( yxyx v FY=y           (3.10) 

 )()(),( yxyx d yy Y=           (3.11) 

 Using a similar extension of the properties, one can now define the filters h 

and g for the basic functions. The filters are hr, hc. gr and gc for F(x),  F(y), y(x) and 

y (y) respectively. The subscripts r and c stand for row and column and indicate the 

direction in which the filters are applied. So, the low pass and detail images are given 

by 

 C1 = hr hc C0                            (3.12) 

 dh =  d1,1 =  hr gc C0          (3.13) 

 dv =  d1,2 =  gr hC C0          (3.14) 

and 

 dd =  d1,3 = gr gc C0          (3.15) 
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 Computationally, the 2D wavelet Transform of an image is taken in two parts. 

First, the 1D wavelet transform is taken along the image pixel rows by multiplying 

each row by the appropriate low and high pass filters h and g. The low pass and detail 

groups are then down sampled by two. The second steps in the 2D wavelet transform 

are accomplished by taking the 1D wavelet transform along the columns of each of 

the reordered low and high pass filtered groups. These are again accomplished by 

multiplying both the low pass and high pass filtered groups by the same low pass and 

high pass filters discussed above. The columns are again down sampled by two. The 

result of this operation is a decomposition which has a low pass L image in quadrant 

one, a vertical error image Dv in quadrant two, a horizontal error image Dh in quadrant 

three, and a diagonal error image Dd in quadrant four. Thus, the first wavelet 

decomposition of the image is complete. Further wavelet transformations of the 

resulting low pass image will result in multi-resolution wavelet transform 

decomposition. Many types of wavelets are available. For example, the JPEG 2000 

compression standard uses the bi orthogonal CDF 5/3wavelet for lossless compression 

and a CDF 9/7 wavelet for lossy compression (Daubechies 1990). 

3.2.4  FILTER BANKS 

 The simplest type of filter bank is one consisting of only two filters. In this 

case, input filter is decomposed into two sub bands by using a low pass and a high � � � � � � � 
 � � � � � � � � � � � 
 � � � � � � � � � � � 	 � � � � � � � � � � � � � 
 � � � � � � � � � � � � � � � � 
 � �
s procedure is 

the synthesis of two sub bands into one signal. The filters used for this procedure are � � � � � 	 � � � � 
 � � � � � � � � � 
 � � � � � � � � � � 	 � � 	 
 � � � � � � � � � � � � � 	 � � � � � � 
 � 	 � � � � � � �
frequencies than the original signal (Park et al., 2004). As a consequence, the 

sampling rate can be reduced before any further processing. Reducing the sampling 
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rate allows for more efficient processing of the signals. The original signal is 

reconstructed by increasing the sampling rate of the sub bands before applying the 

synthesis filters. 

The analysis filters along with the down sampling system by 2 constitute the 

analysis section of the filter bank. The up sampling system by 2 along with the 

synthesis section of filter bank forms the synthesis section. When the filter bank 

consists of two quadrature mirror filters, then the decomposition procedure is 

reversible and approximately perfect reconstruction of the original signal is possible. 

An example of filter bank having 2 channels is shown in Figure 5. aL
 
is the low pass 

analysis and aH  is the high pass analysis filters, while sL is the low pass synthesis 

and sH is the high pass synthesis filters. ][nylow  
is low pass signal and ][nyhigh is 

high pass signals. Both are obtained from the decomposition procedure. The 

reconstructed signal is ][' nX . 

 

Figure  5: Example of a 2 channel filter bank. 
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3.2.5  CONTOURLET TRANSFORM 

By combining the Laplacian Pyramid (LP) and the Directional Filter Bank 

(DFB), Do and Vetterli (2004) proposed the Contourlet transform, which decomposes 

the spectrum into trapezoid-shaped sub-bands. A one level LP decomposes a input 

image into a down sampled low pass sub-band and a high pass sub-band, and then the 

high pass sub-band is decomposed into various directional sub-bands by the DFB, to 

avoid the division of low frequency regions, at each stage the contour transform 

removes the low frequency component from the high pass sub-band before 

implementing the DFB decomposition. If this procedure is iterated on the low pass 

sub-band, then a multi-scale and multi direction decomposition of images is achieved. 

By taking the advantages of both the LP and DFB, the contourlet transform can 

efficiently capture high frequency directional information in images, such as oriented 

edges. 

The spectrum of an original image could be decomposed into four scales, 

which are then divided into one, two, four and eight directions sub-bands from coarser 

scales to finer scales, respectively. Due to the abundant number of small absolute 

values coefficient, the Contourlet transform is a sparse expression of images. Each 

sub-band of the Contourlet transform, which consists of a pairwise trapezoid shaped 

regions symmetric to the origin in Figure, corresponds to an oriented basis function. 

Therefore, the Contourlet   transform can offer basis functions oriented at 
k2 different 

directions at each scale, where k  is an arbitrary positive integer. Rich and flexible 

multi scale and oriented basis functions allow the Contourlet transform to effectively 
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represent smooth contours. However, the Contourlet transform has the drawback of � � � � � �  ! � " ! # $ % ! % & ' ( ) * � � ( " + , - % ! . � " & % ) / 0 1 % # 1
comes from the LP. 

3.3  DISCRETE SHEARLET TRANSFORM 

This new representation is based on a simple and rigorous mathematical 

framework which not only provides a more flexible theoretical tool for the geometric 

representation of multidimensional data, but is also more natural for implementation. 

In addition, the Shearlet approach can be associated to a multi-resolution analysis. In 

this section, the development of discrete implementations of the Shearlet transform to 

obtain the Discrete Shearlet Transform is explained. The theory of composite 

wavelets, recently introduced by their collaborators (Guo et al., 2004, Guo et al., 2006 

and Guo et al., 2006a),provides an especially effective approach for combining 

geometry and multi scale analysis by taking advantage of the classical theory of affine 

systems. In dimension n = 2, the affine systems with composite dilations are the 

collections of the form: 

{ }22/

,, ,:)(|det|)()( ZÎZÎ-== kljkxABAxA jlj
kljAB yyy     (3.16) 

Where BAL ,),( 22 ÂÎy are 2*2 invertible matrices and 1|det| =B .The elements of 

this system are called composite wavelets if )(yABA forms a Parseval frame (also 

called tight frame) for )( 22 ÂL ; that is,  

 ,|,|
22

.,
,,

ff klj
klj

=å y                                          (3.17) 
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For all )( 22 ÂÎLf , the dilations matrices jA are associated with scale 

transformations, while the matrices
lB  are associated to area preserving geometrical 

transformations, such as rotations and shear. This framework allows one to construct 

Parseval frames whose elements range not only at various scales and locations, like 

wavelets, but also at various orientations. Let us consider a special example of 

composite wavelets in )( 22 ÂL called Shearlets. These are collections of the form 

(3.17) where 0AA= is the anisotropic dilation matrix and 0BB= is the shear matrix, 

which are given by  
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From the conditions on the support of 1

5
y  and 2

6
y one can easily observe that the 

functions lkj ,,

7
y  have frequency support: 
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That is, each element lkj ,,

7
y is supported on a pair of trapezoids, of approximate size 

jj 2*22
 oriented along lines of slope jl -2 (see Figure 6(b)).  

 

(a)             (b) 

Figure  6: (a) The tiling of the frequency plane induced by the Shearlet            

(b) The frequency support of a Shearlet that satisfies parabolic scaling 

The equations (3.20) and (3.21) imply that  
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Finally, let )( 2
0 ÂÎ ¥Cy be chosen to satisfy 
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where, Dc denotes the indicator function of the set D. This implies 
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For 2221 -££- jj l , each term )(
)(

,
xd

lj
W  is a window function localized on a pair of 

trapezoids, as illustrated in Figure 6(a). When ,122 -=-= jj lorl at the junction of 

the horizontal cone 0D  and the vertical cone )(
)(

,,1 xd
lj

WD is the superposition of two 

such functions. Using this notation, for 1,0,,122,0 2 =ZÎ-££-³ dklj jj
, we can 

write the Fourier transform of the Shearlets in the compact form 
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And from this it follows that  
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for .
B

),( 2
21 ÂÎxx  

An NN* image consists of a finite sequence of values,{ }1,1

0,21 21
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where ÎN . Identifying the domain with the finite group
2

NZ , the inner product of 

image :, yx
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Thus the discrete analog of 2L ( 2 ) is 2l
2

N . Given an image 
2lf Î (

2

N ), let 

],[ 21 kkf
Ù

denote its 2D Discrete Fourier Transform (DFT): 
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The brackets in the equations ],[ ×× denote arrays of indices, and parentheses ),( ×× denote 

function evaluations. Then the interpretation of the numbers ],[ 21 kkf
Ù

as samples 

),(  ],[ 2121 kkfkkf
ÙÙ

=  is given by the following equation from the trigonometric 

polynomial. 
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First, to compute 

)2,2(),( 2
2

1
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In the discrete domain, at the resolution level j, the Laplacian pyramid 

algorithm is implemented in the time domain. This will accomplish the multi scale 

partition by decomposing 1,0],,[ 2121
1 -<£-

j
j

a Nnnnnf , into a low pass filtered 

image ],[ 21 nnf j

a , a quarter of the size of ],[ 21
1 nnf j

a
-

,and a high pass filtered 

image ],[ 21

1 nnf j

d

-
.Observe that the matrix ],[ 21

1 nnf j

a

-
 has size jj NN * ,where 

NN j
j

22-= and ],[],[ 2121
0 nnfnnfa = has size NN * . In particular, 
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Thus, ],[ 21 nnf j

d are the discrete samples of a function ],[ 21 xxf j

d , whose Fourier 

transform is ),( 21 xx
j

df
Ù

. In order to obtain the directional localization the DFT on the 

pseudo-polar grid is computed, and then one-dimensional band-pass filter is applied to 

the components of the signal with respect to this grid. More precisely, the definition 

of the pseudo-polar co ordinates Î),( vu 2
as follows: 
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After performing this change of coordinates, ),(f  ),( 21 xx
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dj vug
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This expression shows that the different directional components are obtained 

by simply translating the window function W . The discrete samples 

),(],[ 2121 nngnng jj = are the values of the DFT of ],[ 21 nnf j

d on a pseudo-polar grid. 

That is, the samples in the frequency domain are taken not on a Cartesian grid, but 
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along lines across the origin at various slopes. This has been recently referred to as the 

pseudo-polar grid. One may obtain the discrete Frequency values of 
j

df on the 

pseudo-polar grid by direct extraction using the Fast Fourier Trans-form with 

complexity NON log2 or by using the Pseudo-polar DFT. 

A special form of DST named NSST is adopted for the proposed sports video 

classification system which exhibits excellent shift invariance and highly redundant 

decomposition. Also, it eliminates the effect of acquisition noise effectively. The non-

subsampled version is easily implemented from DST by removing up and down 

sampler in the Laplacian pyramid decomposition structure. 

3.4  KNN CLASSIFIER 

Machine learning is a branch of computer science where algorithms are used 

that allows a computer to extract relevant data from patterns and use that data to make 

intelligent decisions. It is especially useful in situations where patterns may be very 

complex and not feasible for a human to develop instructions for every possible 

situation or even recognize the patterns. In the case of classification, the decision 

would be to what class the data belongs. Computer learning falls under two broad 

categories: supervised and unsupervised learning. Unsupervised learning is used when 

there is no class data available for a dataset. In this case objects are partitioned so as 

to best cluster the data.   

Supervised learning is used in situations where there is some sample data 

available with appropriate decisions that can be used as a training set. Classifiers often 

operate in two phases. The training phase is where the relationship between certain 
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features and outcomes is determined and optimized. This is often a long and 

computationally intensive process. The operating phase is when the training data is 

put to use to classify an object. This is usually much quicker. Possibly the most 

important component of a classification routine is the feature vector. The feature 

vector is a set of scalar quantities that describe an object. The success of a machine 

learning algorithm depends on the choice of a feature vector. The algorithms work by 

comparing the feature vector of a test object with those of objects already classified. If 

the data in the feature vector is not appropriate for the classification task, it will fail.  

Usually the initial choice of a feature vector is not the best one. Some features 

may not contribute to the classification task or might be made redundant by other 

features. Attempting to classify with these features can not only significantly increase 

computation time, but can make classifications less accurate. In order to mitigate this 

problem, a feature reduction step should take place. A good feature reduction process 

will result in faster learning due to less data, higher accuracy and better generalization 

to other data sets. There are two approaches of choosing a feature vector from all 

available features, top- down and bottom-up. The former takes a vector of all features 

and removes them one by one, testing the classification accuracy at each step. The 

bottom-up approach does the opposite. It starts with an empty vector and adds 

features to it one by one. Classifiers can be either soft or hard. A Hard classifier 

classifies an object without giving a probability. The assumption is made that an 

object that meets a certain criteria always belongs to a particular class. Soft classifiers 

give a probability of their classification. The assumption made is that sometimes 

objects with similar features may belong to different class. The algorithm for the basic 

KNN classifier is as follows: 
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BEGIN 

 Input: )},(),......,,{( 11 NN cxcxData =
 
and ),....,( 1 nxxx = new  

   instance to be classified 

 1. For each labeled instance ),( ii cx calculate ),( xxd i . 

 2. Order ),( xxd i from lowest to highest, ),....,1( Ni =  

 3. Select the K nearest instances to K

xDatax :  

 4. Assign to x  the frequent class in K

xData  

END 

 The proposed sports video classification system uses the following 

distance measures to evaluate the performance. 

3.4.1 EUCLIDEAN DISTANCE 

 The Euclidean distance measures calculation is as follows: Let us consider 

( )11, yxu = and ( )22 , yxv =  are two points. The Euclidean distance between these two 

points is given by 

Euclidean distance ( ) ( ) ( )222

2

11, yxyxvu -+-=
  

 (3.38) 
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If the points have n-dimensions such as ( )nxxxxu K,,, 321= and 

( )nyyyyv K,,, 321=
 
then the generalized Euclidean distance formula between these 

points is 

Euclidean distance ( ) ( ) ( ) ( )22

22

2

11, nn yxyxyxvu -++-+-= K     (3.39)      

3.4.2 CITY BLOCK DISTANCE 

 Let us consider ( )11 , yxu = and ( )22 , yxv =  are two points. The city 

block distance between these two points is given by 

( ) 2121, yyxxvucityblock -+-= . If the points have n-dimensions such 

as ( )nxxxxu K,,, 321= and ( )nyyyyv K,,, 321= then the generalized city block 

distance formula between these points is 

( ) nn yxyxyxvucityblock -+-+-= KKL2211, å
=

-=
n

i

ii yx
1

         (3.40) 

3.4.3 COSINE DISTANCE 

 Let us consider  and  where ( )nxxxxX K,,, 321= and 

( )nyyyyY K,,, 321= then qcos  may be consider as the cosine of the vector angle 

between  and  in n dimension.  The cosine of the vector angle between X and Y is 

given by 

 ( )
åå

å
=

i ii i

i ii

yx

yx
YXCOSINE

22
,         (3.41)                       
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 One important property of cosine angle is that it gives a metric of similarity 

between two vectors unlike Manhattan distance and Euclidean distance, both of which 

give metrics of dissimilarities.  Also ( ) [ ]1,0, ÎYXCOSINE , this makes it easy to 

combine the distance between two images using multiple features.  

3.4.4 CORRELATION DISTANCE 

 A correlation is single number that describes the degree of relationship 

between two variables X and Y where ( )nxxxxX K,,, 321=  

and ( )nyyyyY K,,, 321= . The correlation r between X and Y is defined by  

 

( )( )
( )[ ] ( )[ ]å ååå

åå å
--

-
=

2222 yyNxxN

yxxyN
r        (3.42) 

3.5 SUPPORT VECTOR MACHINE 

In the following sections, a learning algorithm called support vector machine 

(SVM) is discussed. It has many good properties which are described in (Erasto, 

2001) as follows: Basically, it is a linear discriminate function and has fast shattering 

dimension and a low Vapnik Chervonenkis. The theories of large margin classifier 

and Vapnik Chervonenkis theory can partially justify the usage of SVM. The main 

properties of SVM are as follows: 

1. It performs well and good in real world situations as presented by Gunn (1998). 

2. It is easy to understand and implement.  

3. It is robust as proposed by (Smola et al., 2000). 
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4. It has a global solution while others have more than one local solution as  

 presented by Crisp (1999).  

3.5.1  THE LINEARLY SEPARABLE CASE 

Let us consider, a linear discriminant function for a linearly separable training 

set ( ){ }niii yxZ 1, == of the form 

ÂÎÂÎ+ bwbxwx dT ,,a    (3.43) 

 for which the corresponding decision function )sgn( bxwt T +=  has the property 

0)( =ten .  In order to separate the training set with no error, many linear classifiers 

are available. However the main aim is to choose the best one based on margin 

(Erasto, 2001).  To maximize, the minimum margin w  and b  the training set, Z must 

satisfy the following condition 

1min =+
Î

bxw i
T

Xxi

                (3.44) 

 Hyperplanes of the above form are usually called canonical hyper planes. The 

geometric marging is defined as 

      

2

)(

w

bxwy i

T

i
i

+
=g                       (3.45) 

It can be seen that maximizing the minimal geometric margin reduces to 

minimizing the norm of the weight vector. The optimal separating hyper plane is the 
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one that satisfies the equation (3.46) in which the geometric minimum margin is 

maximized. 

nibxwy i

T

i ,...,1,1)( =³+                 (3.46) 

The problem of finding the optimal separating hyper plane can be written in 

the form 

nibxwyts

w

i

T

i

bw

,...,1)(..
2

1
min

2

2,

=+
 

               (3.47) 

Instead of solving the above minimization problem, one can solve the dual 

maximization problem as given in (3.48) because of the fact that the dual problem is 

independent of the dimension of x and instead scales with the number of observations. 

This is a very good property, especially when x is high dimensional and the number of 

observations remains small.  

0

,...,1,0..

)(
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1
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1

1,1
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                   (3.48) 

Solving the constrained optimization problem (3.47) gives a solution a  in 

terms of which the optimal weight vector w is 

iii

ai

yxw
i

a
0

C
:

å
>

=                           (3.49)  



71 

and the optimal bias term b
D

is given by 

 úû
ù

êë
é +-=

-==
)(max)(min

2

1

11
i

T

y
i

T

y
xwxwb

ii

                  (3.50) 

For numerical reasons, it is often better to use more support vectors for 

calculating b
E

and in the case where the number of support vectors from classes -1 and 

1 are equal we can set

)]1(1)1(1[
}0|{2

1

0
F

:

-=+=
>

-= å
>

iiii

T

ii

yxyxw
i

b
iaa

)

                         (3.51) 

 Training vectors xi for which they ia
G

are strictly positive are called 

support vectors. From the Kuhn-Tucker complementary condition, it follows that the 

points xi  for which ia are positive must satisfy 

 1)( =bxwy i
T

i                             (3.52) 

So that all support vectors lie on a hyper plane at functional distance 1 from the 

optimal separating hyper plane as shown in Figure 7. Because of this property, the 

number of support vectors can be very small. Another important property of support 

vectors is the following: if we remove all the data points (xi, yi) for which the xi's are 

not support vectors, the same solution bw
H

,
H

is obtained. Thus, the support vectors give, 

in some sense, a compact representation of the data. Also the SVM ignores non-

informative data and considers only informative data points from point of view of the 

optimal hyper plane, that is, points lying on the hyper planes which have unit 

functional distance from the optimal separating hyper plane. 
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Figure  7: The optimal separating hyper plane for linearly separable case. 

In Figure 7, the solid line is the optimal separating hyper plane. Support 

vectors (highlighted with an extra circle) are the points which lie on hyper planes (the 

dashed lines) that have unit (functional) distance to the optimal separating hyper 

plane. Losing the quality of the estimate is very useful, especially when very large 

datasets are considered. Of course, this property can be used to classify a previously 

unseen vector x¢ only after the optimal hyper plane has been found and training must 

be done using the whole dataset. For the optimal parameters, bw
H

,
H

the classifier t is 

given by 

)sgn()( bxwxt T +=      (3.53) 

Another possibility is to use the optimal parameters as follows, 

ï
î

ï
í

ì

->

<£-

-£-

+=

11

,1,10

,11

)(),()(

sif

sif

sif

shwherebxwhxt T
   (3.54) 
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which can be interpreted to give a naive posterior probability estimate of 

classification. 

3.5.2  THE LINEARLY NON-SEPARABLE CASE (SOFT MARGIN) 

Let us assume that one cannot separate the data without a misclassification 

error using the class of linear classifiers but still try to find a linear discriminant 

function. By the error of observationx the amount by which the discriminant function 

fails to reach the (functional) unit margin is shown in Figure 8. Formally, 

)},
II

(1,0{max: bxwy i

T

ii +-=x                        (3.55) 

and misclassification takes place when 1>ix .  

 

 

 

 

 

 

 

 

Figure  8: The optimal separating hyper plane for linearly non-separable case 

x
x

J J
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 In the linearly non-separable case, the optimal hyper plane is defined to be 

the hyper plane which maximizes the geometric margin and minimizes some 

functional )(xq of the errors. The functional )(xq is usually of the form 

sxxq i

n

i

å
=

=
1

)(                                   (3.56) 

wheres is the some small positive constant. Usually the value 1=s is used since the 

corresponding dual does not involvex and therefore offers a simpler optimization 

problem. The constraint now assumes the form 

nibxwy ii

T

i ,...,1,1)( =-³+ x      (3.57) 

Where, 0³ix K Selecting 1=s the optimization problem is 

i

n

i
bw Cw å

=

+
1

2

2,,
2

1
min xx  

nibxwyts ii
T

i ,...,1,1)(.. =-³+ x

nii ,...,1,0 =³x (3.58)
 

Here C is a positive trade-off parameter which intuitively defines how 

important it is to avoid misclassification errors. Crisp (1999) have suggested in that 

every observation has its own trade-off parameter iC , the second term in the objective 
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beingå
=

n

i

iiC
1

x . Again, instead of solving direct optimization problem (3.58), consider 

the corresponding dual problem with the objective function 

 ),(
2

1
)(

1,1

j

T

ijiji

n

ji

i

n

i

xxyyW aaaa åå
==

-=                  (3.59) 

to be maximized with the constraints 

niCi ,...,1,0 =££a  

    0
1

=å
=

ii

n

i

ya                    (3.60) 

The only difference between the duals in the linearly separable and the non-

separable cases is that in the non-separable case the coefficients ia have an upper 

bound C . From the Kuhn-Tucker complementary condition it also follows that ci =a  

if and only if 0>ix  and thus the vectors ix with 0>ix   are support vectors. The 

standard form of the SVM can be used in two-way classification. However, in real-

life situations it is often necessary to separate more than two classes at the same time. 

The well-known example is the classification of Hand written characters. The 

standard SVM can be extended from the binary two-class problem to classification 

tasks with 2>k classes. New theoretical foundations of multiclass classification 

systems are presented by (Guermeur et al., 2000). 
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3.5.3  SVM CLASSIFICATION 

The simplest extension of the SVM to a k -class problem is to separate the 

observations from class j  from the rest for every kj ,...,1= L M N O N P Q N R O N S P T U N V W S
that all the observations from classes other than j are combined to form one class. The 

optimal hyper plane that separates samples from the class j  and the combined class is 

found by using the standard SVM approach (Guermeur et al., 2000). The optimal 

separating hyper plane discriminating the class j  and the combined class is defined by 

 kjbwx j

jT ,...,1, =+                         (3.61) 

where, the superscript in 
jw  stands for the class which should be separated from the 

other observations. The decision rule 
jt  that assigns the vector x to the class j  or to 

the combined class is 

)(sgn()( xgxt ij =      (3.62) 

where, j

jTi bwxxg )( += . After all the k  optimal separating hyper planes defined by 

kjbw j
j ,...,1),

X
,

X
( =  have been found, the final classifier kt  

is  

  
))((maxarg)( xtxt j

jk =          (3.63) 

This approach of assigning the class label using argmax-rule is usually called 

voting. In this case voting is performed by giving every classifier a vote of size one 

and the unknown label is decided to be the index of the classifier that gives the only 

positive vote. If there are no positive votes or if there is more than one classifier 
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jt with positive vote, then no decisions about the class label is made. The one-

versus-all approach has drawbacks that can be rather serious. In (3.63) the argmax-

rule is not well-defined since there is not always a unique solution.  

 

Figure  9: Three classes aligned approximately along a line. 

The main difficulty in this approach is that the outputs of the classifiers 
jt  are 

binary values, e.g., )()( xtxt hj =  even if 0)()( >>> xgxg hj
. The usual way to 

handle this problem is to ignore the sign-operator and to use the argmax-rule for 

the )(xg j Y Z [ \ ] ^ _ ` Z a b b c d a e _ ^ _ f ` ] g f h d i ^ _ f j a c k f Z ^ e d l b d ] f ] ^ d i ^ _ f g ` Z e c ` l ` ] a ] ^
vector ))()........(( 1 xgxg k

is assigned to the vector x . Even with the winner-takes-all 

modification, the one-versus-all approach has problems which occur for example 

when the classes are approximately aligned along a line. Figure 9 illustrates such a 

situation where the class 2 cannot be reasonably separated. 

In this chapter, multi resolution analysis based on NSST is discussed. This 

transform is applied to various image processing applications such as compression 

(Lim, 2009), de-noising (Easley et al., 2006), enhancement (Negi and Labate, 2010) 
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and edge detection (Yi et al., 2009).SVM is a well known machine learning approach 

to automated learning of pattern classifiers.  

3.6 TYPICAL COMPUTER VISION SYSTEM 

Figure 10 shows a computer vision system and its various components. Firstly, 

the images are acquired by using a standard camera. In the preprocessing stage, the 

acquired image is de-noised, enhanced or segmented by the  properties of each region, 

depending on particular application. The next stages are feature extraction and 

classification where the classifying patterns are identified by the extracted features. 

 

Figure  10: Components of a computer vision system 

3.7 PROPOSED SPORTS VIDEO CLASSIFICATION SYSTEM 

The automatic classification of sports video is growing exponentially due to its 

tremendous commercial demand among the various video collections such as 

commercial, cartoon, drama and news. It aids in efficient storage, quick browsing, and 

retrieval of large collection of video data without losing important aspect. Video 

classification provides automatic interpretation of video objects to assist computer 
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vision and automatic management system. On account of similarity between various 

sports video, extraction of cognitive information is considered as a challenging task in 

sports video classification.  

In this section, an efficient sports video classification system is proposed using 

the distribution of edge strengths extracted by exploiting NSST. In addition, multi 

class SVM classifier is employed for automated video classification. On account of 

current terrific interests on sports, there are five sports video such as cricket, 

volleyball, basketball, football and tennis are considered for this study. The success of 

any pattern recognition system relies on the appropriate design of two computational 

modules: feature extraction and classification. These two modules are discussed in the 

following subsections in detail.  

3.7.1  FEATURE EXTRACTION 

In any machine learning and pattern recognition approaches, feature extraction 

is considered as a critical process because the features obtained from this process 

directly influence the efficacy of the classification process. Also, it is defined as the 

first stage of intelligent image analysis, which tends to remove the redundant data and 

posses more intrinsic content of the original data.Thus, the task of feature extraction 

emphasizes the significant image information.

Feature extraction serves not only to reduce the dimensionality but also to 

capture the characteristics of the input pattern. The selected features are very effective 

for preserving the class separability. Hence, the extracted features with high 

discriminative nature will assist the classification system effectively while the lack of 

discrimination reduces the accuracy of the classification system. Figure 11 depicts the 
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various computational blocks of the proposed feature extraction module. The property 

of the selected features must satisfy the following conditions: m  The features should carry enough information about the each sports video.m  The feature should be differentiated from one category to all others and vice 

versa. m  They should be simple and easy to compute. 
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Figure  11: Proposed sports video classification system - Feature extraction 

phase 
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The efficacy of the proposed sports video classification mainly depends on the 

discriminative nature of the features/attributes used for the representation of video 

contents. The efficient video content discrimination is achieved by the proposed 

system by exploiting multi-scale geometric characteristics of NSST as feature 

extraction technique. The optimal representation of image edges and the geometric 

features captured from the input multidimensional data by NSST can improve the 

classification accuracy of the proposed sports video classification system. The 

proposed system uses NSST as feature extraction technique. The reasons behind them 

are listed below: 

· It possesses efficient accuracy for detection of edge orientation. The geometry 

of edges information is precisely captured in NSST transform by exploiting 

anisotropic dilations and multiple orientations. 

· It is a multi-scale transform and has well organized multi-scale structure. Also, 

the affine mathematical structure of NSST is same as traditional wavelets. 

· It provides a stable decomposition and reconstruction algorithm for video 

frames with very low complexity. 

The edges features in an image are considered as prominent features for the 

analysis and recognition of many image processing and computer vision algorithms. 

In order to extract the edge features, the recent multi-scale mathematical framework 

named NSST is exploited. The multi-scale transformation is applied to each frame of 

training video at pre defined level of decomposition and directions. The obtained 

NSST sub-bands have edge strength information which is considered for feature set 
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evaluation. Figure 12 shows the decomposition of input video frames from various 

sports categories by NSST at 2-level 2-direction. 
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Figure  12: NSST sub-bands at 2-level with 2-direction (a) sub-bands of low 

frequency (b) - (e) Sub-bands of high frequency 

From Figure 12, it is observed that the edges of each sports video are clearly 

extracted by the application of NSST decomposition. The high dimensional edge 

strength features  (size of each sub-band is same as size of the input frame) of  
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each sub-band are reduced by computing the distribution of edge strengths into 10 

bins based on their appropriate magnitude ranges. This means that each video frame is 

represented by 10 features. Finally, the mean of distribution of edge strengths is 

computed as each video consists of 500 frames and used as features by the proposed 

system. To find the feature set that provides paramount discriminating power, the 

process of NSST is tested by increasing the decomposition level with various 

directions from 2 to 64 

3.7.2 CLASSIFICATION 

The classification task is the final stage of the proposed NSST and SVM 

classifier based sports video classification system where the unknown sports video  is 

labeled into one of the predefined class of  sports video category. Most of the 

classification system often operates in two phases: The training phase is where the 

relationship between certain features and outcomes is determined and optimized. This 

is often a long and computationally intensive process. The classification phase is 

when the training data is put to use to classify an object. This is usually much quicker. 

Supervised model of multiclass SVM classifier is employed in this proposed method 

for its generalization and discriminative learning approaches. The classification 

module of the proposed sports video classification system using NSST and multiclass 

SVM-RBF classifier is shown in Figure 13. 
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Figure  13: Classification phase of the proposed sports video classification 

system 

While comparing SVM with Artificial Neural Network (ANN), SVM gives 

the better performance in most of the cases and they are furnished below: 

· SVM is very simple to analyze and derive theoretically than ANN. 

· In the learning stage, SVM maps the training data to high dimensional space 

using various kernels like linear, radial basis functions. Finally a hyper plane 
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is selected that separates the training data which has maximum margin and 

minimum error 

· n o p p q p q r s t u t v w s t q x y t z s { | u w t x } t ~ ~ | p | x � | � | s � | | x � � � w x } � � � �  
· The main objective of learning stage in ANN is to minimize the error for a 

particular set of weight values whereas in SVM is to adjust the capacity of the 

machine. 

· The number of hidden layers in ANN is same as support vectors in SVM.  

In this study, the multiclass SVM classifier uses Radial Basis Function (RBF) 

kernel for better classification. The reason is that the RBF-SVM is suitable if the 

number of features is very low. The linear mapping does not improve the performance 

if the number of features is very low and it is a time consuming process to map the 

data. The SVM algorithm is as follows.

1. Calculate the RBF kernel based on the training samples and ensure that the 

function is symmetric. 

2. Create the Hessian matrix based on kernel by using the targets or groups. 

3. Calculate the optimal separating hyper plane by minimizing the cost 

function (3.49) using quadratic programming. 

4. Select the non-zeros of values that minimize the cost function as support 

vectors.  

5. Calculate the parameters of the separating line from the support vectors.  
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6. Classify the test samples by using the support vectors and the parameters of 

the separating line. If the points lie on the boundary, then it is assigned to 

one class, or else assigned to another class. 

The unknown video undergoes into feature extraction as same as training 

video feature extraction. The extracted feature from test video and stored feature 

database is given to the multi class SVM classifier, where the unknown video is 

categorized by it. For classification, SVM separates the features into given number of 

classes by constructing hyper plane. 

3.8 EXPERIMENTAL SETUP 

3.8.1 PROGRAMMING ENVIRONMENT 

The simulation of the proposed sports video classification system is 

implemented in MATLAB R2013b and tested on Intel architecture under the windows 

operating system. MATLAB was created by Cleve Moler, the chairman of the 

computer science department in the late 1970s at the University of New Mexico. It is 

a high level language used for visualization, numerical computation and 

programming. It can be used in various applications such as image and video 

processing, signal processing, control systems and communications.  

3.8.2 PERFORMANCE MEASURES 

The performance of the proposed sports video classification system discussed in 

section 3.7 is determined by confusion matrix and classification accuracy. The 

definition for these two performance measures are discussed below. 
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3.8.2.1 CLASSIFICATION ACCURACY 

In data mining, the most common parameter used to assess the performance of 

any system is classification accuracy. It gives the accuracy of the proposed 

classification system. The classifier performance is better if it has higher classification 

accuracy and given in eq. (3.58). 

100(%) X
testedvideossportstotal

videossportsclassifiedcorrectly
Accuracy =  (3.64) 

3.8.2.2 CONFUSION MATRIX 

For a two class problem, confusion matrix is constructed by using the 

classifier outcome with the actual one. Table I shows the confusion matrix. 

TABLE  I CONFUSION MATRIX  

 

Test outcome 
Actual Class 

Class A Class B 

Class A True Positive False Positive 

Class B False Negative True Negative 

 
In table I 

· True positive: class 1 object is correctly classified. 

· False Positive: class 2 object is incorrectly classified 

· True Negative: class 2 object is correctly classified 

· False Negative: class 1 object is incorrectly classified 

3.8.3 DATA SET 

The evaluation of the proposed NSST and multiclass SVM classifier based 

sports video classification system is carried on a database which has five kinds of 

sports video such as volleyball, basketball, tennis, cricket and football. The data sets 
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are obtained from TV broadcast channels in different sessions. Totally, 500 video 

clips are collected for these experiments, in which 100 video clips are selected for 

each sports video. Each of the sports clip composed of 500 frames at the resolution of 

128 x 128 pixels with 20 seconds duration. Among 100 video clips from each sport 

genre, 50 video clips are used to train the multiclass SVM classifier and remaining 50 

video clips are used to test the proposed system by random selection process. Figure 

14 shows the sample frames from five sports category: cricket, basketball, tennis, 

volley ball and foot ball videos in the database. 

 

(a) 
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(b) 

 

 (c) 
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(d) 

 

                                                                    (e) 

Figure  14: (a)  (e) Sample video frames from five sports categories  


